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Problem

Artificial neural networks (ANNs) are a popular class of computational models
for studying neural control of movement.

Typically, their use requires a biomechanical simulator and a neural network
software to work together to efficiently train meaningful models.

This leads to two impracticalities:

(1) Researchers must rely on two different, independent platforms,
forcing tinkering and preventing creation of streamlined software pipelines

(2) Effectors are not differentiable, constraining researchers to reinforcement
learning algorithms to train networks.
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Solution

Base requirements:

No dependency. Biomechanical simulation and ANN training on the same platform.
Differentiable effectors. To enable backpropagation through the plant.

MotorNet was built to meet these requirements. It requires no dependency
beyond typical pip or anaconda libraries, and all biomechanical models are built as
tensors, allowing for backpropagation through the plant. Additionally:

- It is open-source, so individual contributions are possible (and even welcome).

- Install simply using pip install motornet, useful for remote computing.

- High-level and fully documented API : https://oliviercodol.github.io/MotorNet
- Modular, easily customizable and expandable set of effectors.

- Based on TensorFlow. Anything TensorFlow can build can be used as a controller.

Example: Curl Field Adaptation in a Centre-Out Reaching Task
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MotorNet's Architecture Is Modular

There are 5 base classes, each with pre-built subclasses, as indicated in the table below.

-
SKELETON

MUSCLE

PLANT

~

NETWORK TASK

PointMass

Relu
(torque actuator)

RigidTendonArm26

GRUNetwork| CentreOutReach

Arm?2

Rigid Tendon
Hill Muscle !

ReluPointMass24

DelayedReach

Rigid Tendon
Hill Muscle %

CompliantTendonArm26

DelayedMultiReach

Compliant Tendon
Hill Muscle !

Based on the formalization by Kistemaker et al. (2010) [1] and Thelen (2003) [2]
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(2) send new motor commands

@ pass on motor commands

(2) return forces

@ send moment-adjusted forces

@ return new joint & cartesian states

(5) return feedback states

This enables users to create their own biomechanical model, controller architecture,

and task design by subclassing these object classes.
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Example Use of the API

import motornet as mn
import tensorflow as tf

skeleton = mn.plants.skeletons.TwoDofArm()
muscle = mn.plants.muscles.RigidTendonHil1lMuscle()
plant = mn.plants.RigidTendonArm2é(
muscle_type=muscle,
skeleton=skeleton)

network = mn.nets.layers.GRUNetwork(
plant=plant,
n_units=50,
kernel_regularizer=10%%-6)

task = mn.tasks.CentreOutReach(network=network)

inputs = task.get_input_dict_layers()
stated =

rnn = tf.keras.layers.RNN(

task.get_initial_state_layers()

cell=network,
return_sequences=True)
statel = rnn(inputs, initial_state=state0)

optimizer = tf.optimizers.Adam(clipnorm=1.)
model = mn.nets.MotorNetModel(
inputs=[inputs, state0],
outputs=statel,
task=task)
model.compile(
optimizer=optimizer,
loss=task.losses,
loss_weights=task.loss_weights)

batch_size = 64
with tf.device('/device:GPU:0'):
[x, v,
n_timesteps=80,
batch_size=500 * batch_size)
model.fit(
x=[x, init_states],
Y=Y,
epochs=1,

init_states] = model.task.generate(

batch_size=batch_size,
shuffle=False)

The above code would create and train a model for a two-joint planar arm
with 6 muscles as in Kistemaker et al. (2010)

Replicating the Directional Representation

Bias from Plant Geometry

Lillicrap & Scott (2013) show that the directional
representation bias in the primary motor cortex is a
direct consequence of the effector's geometry.
Using MotorNet and a more recent GRU network
architecture, we attempt to reproduce that finding.

In a 1-layer, 90-GRUs network, the representation
bias occurs for a Plant with an arm-like geometry
(top row), but not for one with a point-mass
geometry (bottom row).

The polar histograms on the right indicate the
average count of preferential movement direction
across 8 networks trained to reach at random
targets from a random start position across the full

joint space.
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